on reverse degree distance of unicyclic graphs

نویسندگان

z. du

b. zhou

چکیده

the reverse degree distance of a connected graph $g$ is defined in discrete mathematical chemistry as [ r (g)=2(n-1)md-sum_{uin v(g)}d_g(u)d_g(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $g$, respectively, $d_g(u)$ is the degree of vertex $u$, $d_g(u)$ is the sum of distance between vertex $u$ and all other vertices of $g$, and $v(g)$ is the vertex set of $g$. we determine the unicyclic graphs of given girth, number of pendant vertices and maximum degree, respectively, with maximum reverse degree distances. we also determine the unicyclic graphs of given number of vertices, girth and diameter with minimum degree distance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On reverse degree distance of unicyclic graphs

The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...

متن کامل

On Reverse Degree Distance of Unicyclic Graphs

The reverse degree distance of a connected graph G is defined in discrete mathematical chemistry as D(G) = 2(n− 1)md− ∑

متن کامل

degree resistance distance of unicyclic graphs

let $g$ be a connected graph with vertex set $v(g)$‎. ‎the‎ ‎degree resistance distance of $g$ is defined as $d_r(g) = sum_{{u‎,‎v} subseteq v(g)} [d(u)+d(v)] r(u,v)$‎, ‎where $d(u)$ is the degree‎ ‎of vertex $u$‎, ‎and $r(u,v)$ denotes the resistance distance between‎ ‎$u$ and $v$‎. ‎in this paper‎, ‎we characterize $n$-vertex unicyclic‎ ‎graphs having minimum and second minimum degree resista...

متن کامل

Degree Resistance Distance of Unicyclic Graphs

Let G be a connected graph with vertex set V (G). The degree resistance distance of G is defined as DR(G) = ∑ fu,vg V (G)[d(u) +d(v)]R(u, v), where d(u) is the degree of vertex u, and R(u, v) denotes the resistance distance between u and v. In this paper, we characterize n-vertex unicyclic graphs having minimum and second minimum degree resistance distance.

متن کامل

Unicyclic and bicyclic graphs having minimum degree distance

In this paper characterizations of connected unicyclic and bicyclic graphs in terms of the degree sequence, as well as the graphs in these classes minimal with respect to the degree distance are given. © 2007 Elsevier B.V. All rights reserved.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 39

شماره 4 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023